Respuesta :
Answer:
Part(a): The final angular velocity is [tex]\omega_{f} = \dfrac{I_{1}\omega_{i}}{(I_{1} + I_{2})}[/tex]
Part(b): The ratio of the rotational energies is [tex]\dfrac{k_{f}}{k_{i}}& = \dfrac{I_{1}}{(I_{1} + I_{2})}[/tex],showing the the energy of th system will decrease.
Explanation:
Part(a):
If '[tex]I[/tex]' be the moment of inertia of an object and '[tex]\omega[/tex]' be its angular velocity then the angular momentum '[tex]L[/tex]' of the object can be written as
[tex]L = I \omega[/tex]
If '[tex]I_{1}[/tex]' and '[tex]I_{2}[/tex]' be the moment of inertia of the two cylinders and '[tex]\omega_{1}[/tex]' and '[tex]\omega_{2}[/tex]' be the initial angular velocity of the cylinders and '[tex]\omega_{1}{'}[/tex]' and '[tex]\omega_{2}^'}[/tex]' be their respective final angular velocity, then from conservation of angular momentum,
[tex]I_{1} \omega_{1} + I_{2} \omega_{2} = I_{1} \omega_{1}^{'} + I_{2} \omega_{2}^{'}[/tex]
Given, [tex]\omega_{1} = \omega_{i},~\omega_{2} = 0,~\omega_{1}^{'} = \omega_{2}^{'} = \omega_{f}[/tex]. From the above expression
[tex]&& I_{1} \omega_{i} = (I_{1} + I_{2}) \omega_{f}\\&or,& \omega_{f} = \dfrac{I_{1}\omega_{i}}{(I_{1} + I_{2})}[/tex]
Part(b):
Initial kinetic energy
[tex]K_{i} = \dfrac{1}{2} I_{1} \omega_{i}^{2}[/tex]
and Final kinetic energy
[tex]K_{f} = \dfrac{1}{2}(I_{1} + I_{2}) \omega_{f}^{2}[/tex]
Substituting the value of [tex]\omega_{f}[/tex],
[tex]&& K_{f} = \dfrac{1}{2}(I_{1} + I_{2})\dfrac{I_{1}^{2}\omega_{i}^{2}}{(I_{1} + I_{2})^{2}} = \dfrac{1}{(I_{1} + I_{2})} \dfrac{1}{2}I_{1}\omega_{i}^{2} = \dfrac{1}{(I_{1} + I_{2})} K_{i}\\&\dfrac{k_{f}}{k_{i}}& = \dfrac{I_{1}}{(I_{1} + I_{2})}[/tex]
The above expression shows that the ebergy of the system will decrease.
a) The final angular speed of the system is [tex]\omega_{f} = \frac{I_{1}}{I_{1}+I_{2}}\cdot \omega_{i}[/tex] radians per second.
b) Since [tex]r < 1[/tex], then the kinetic energy of the system decreases due to the interaction.
a) The coupling between the two cylinders can be modelled as a entirely inelastic collision, such phenomenon is modelled after the principle of angular momentum conservation, that is:
[tex]I_{1}\cdot \omega_{i} = (I_{1}+I_{2})\cdot \omega_{f}[/tex] (1)
Where:
- [tex]I_{1}[/tex] - Moment of inertia of the moving cylinder, in kilogram-square meters.
- [tex]I_{2}[/tex] - Moment of inertia of the resting cylinder, in kilogram-square meters.
- [tex]\omega_{i}[/tex] - Initial angular speed of the moving cylinder, in radians per second.
- [tex]\omega_{f}[/tex] - Final angular speed of the resulting system, in radians per second.
Then the final angular speed of the system is:
[tex]\omega_{f} = \frac{I_{1}}{I_{1}+I_{2}}\cdot \omega_{i}[/tex]
The final angular speed of the system is [tex]\omega_{f} = \frac{I_{1}}{I_{1}+I_{2}}\cdot \omega_{i}[/tex] radians per second.
b) The system experiment a decrease in total energy if the final kinetic energy to intial kinetic energy ratio is:
[tex]r = \frac{\frac{1}{2}\cdot (I_{1}+I_{2})\cdot \omega_{f}^{2} }{\frac{1}{2}\cdot I_{1}\cdot \omega_{i}^{2}}[/tex]
[tex]r = \left[\frac{(I_{1}+I_{2})}{I_{1}}\right]\cdot \left(\frac{I_{1}}{I_{1}+I_{2}} \right)^{2}[/tex]
[tex]r = \frac{I_{1}}{I_{1}+I_{2}}[/tex]
Since [tex]r < 1[/tex], then the kinetic energy of the system decreases due to the interaction.
We kindly invite to check this question on angular momentum: https://brainly.com/question/12194595