For the material in the previous question that yields at 200 MPa, what is the maximum mass, in kg, that a cylindrical bar with diameter of 4.5 cm can support without yielding ? Recall that a mass of 1 kg has a weight of 9.81 N at sea-level. Answer Format: X (no decimal) Unit: kg Example: of you calculate 41321.78.... enter 41322

Respuesta :

Answer:

The maximum mass the bar can support without yielding = 32408.26 kg

Explanation:

Yield stress of the material ([tex]\sigma[/tex]) = 200 M Pa

Diameter of the bar = 4.5 cm = 45 mm

We know that yield stress of the bar is given by the formula

                Yield Stress = [tex]\frac{Maximum load}{Area of the bar}[/tex]

⇒                                [tex]\sigma[/tex] = [tex]\frac{P_{max} }{A}[/tex]  ---------------- (1)

⇒ Area of the bar (A) = [tex]\frac{\pi}{4}[/tex] ×[tex]D^{2}[/tex]

⇒                            A  = [tex]\frac{\pi}{4}[/tex] × [tex]45^{2}[/tex]

⇒                            A = 1589.625 [tex]mm^{2}[/tex]

Put all the values in equation (1) we get

⇒ [tex]P_{max}[/tex] = 200 × 1589.625

⇒ [tex]P_{max}[/tex] = 317925 N

In this bar the [tex]P_{max}[/tex] is equal to the weight of the bar.

⇒ [tex]P_{max}[/tex] = [tex]M_{max}[/tex] × g

Where [tex]M_{max}[/tex] is the maximum mass the bar can support.

⇒ [tex]M_{max}[/tex] = [tex]\frac{P_{max} }{g}[/tex]

Put all the values in the above formula we get

⇒ [tex]M_{max}[/tex] = [tex]\frac{317925}{9.81}[/tex]

[tex]M_{max}[/tex] = 32408.26 Kg

There fore the maximum mass the bar can support without yielding = 32408.26 kg