Respuesta :
Answer:
T = 200 months
Step-by-step explanation:
Given the model to be
dp/dt = p(10-1-10-7p) where p(0) = 6000
dp/dt = p(-1-7p)
dp/dt = -p+7p²
But since P(0) = 6000
We plug this value into the equation
P = -6000+7(6000)²
P = -6000+252000000
P = 251994000. .limiting value
Differentiating dp/dt w.r.t p
dp/dt = -1+14p
dp'/dt = 14p-1
Plugging p(0) = 6000 into the above we have that
dp'/dt = 14(6000)-1
P' = 84000
Time population would be equal to 3/2 the limiting value
T = 3/2× 84000 = 126000
T = 25199400/126000
T = 199.99months
T = 200 months.
Answer:
a) -29.4 ≤ p ≤ 29.2
b) 4 months
Step-by-step explanation:
dp/dt = p(10 - 1 - 10 - 7p) = p(- 1 - 7p) = -p - 7p²
p = ∫(-p - 7p²)dt = -tp - 7tp² ----------- (1)
For p(0) = 6000
Hence, dp/dt = 0
∴ -p - 7p² = 6000
7p² + p + 6000 = 0
Using the formular, p = -b±√b² - 4ac/2a, where, a = 7; b = 1; c = 6000
p = -1±√1 - 4(7)(6000)/2*7 = -1±√-167999/14 =
p = -1±(- 409.88)/14= -410.88/14 or 408.88/14 = -29.4 or 29.2
∴ The limiting value of the population:
-29.4≤ p ≤ 29.2
b) When p = -29.4/2 or 29.2/2 = ±15
From (1), we have it that, 7tp² + tp = 6000
By substituting the value, p = -15
7t(-15)² - 15t = 6000
1575t - 15t = 6000
∴ t = 6000/1590 = 3.77
It wiil take close to 4 months for the population to be equal to one - haif of the limiting value