A singly reinforced rectangular beam is to be designed, with effective depth approximately 1.5 times the width, to carry a service live load of 2000 lb/ft in addition to its own weight, on a 24 ft simple span. The ACI Code load factors are to be applied as usual. With f y = 60,000 psi and f c′ = 4000 psi, determine the required concrete dimensions b, d, and h, and steel reinforcing bars ( a ) for rho = 0.60 rho 0.005 and ( b ) for rho = rho 0.005 . Include a sketch of each cross section drawn to scale. Allow for No. 4 (No. 13) stirrups. Comment on your results.

Respuesta :

[tex]\phi M n=263 \mathrm{ft} \cdot \mathrm{kip}[/tex] > M OK [tex]\mathrm{Mu}=263.1 \mathrm{ft}.\mathrm{kip}[/tex]

[tex]A s=4.0 \text { in } 2[/tex]

Explanation:

Given properties:

[tex]f_{y}[/tex] = 600000 psi

[tex]f_{c}[/tex] = 4000 psi

I: = 24 ft

[tex]W_{I}[/tex]: = 2000 lbf/ft

[tex]W_{c}[/tex]: = 150 lbf / [tex]ft^{3}[/tex]

For weight determination, the beam dimension is estimated.

[tex]b:=21-in[/tex]

[tex]d:=18-in[/tex]

[tex]h:=12-i n[/tex]

[tex]\mathrm{wo}=\mathrm{b} \cdot \mathrm{h} \cdot \mathrm{wc}[/tex]

[tex]\text { wu }:=1.2-\mathrm{w} \ o+1.6 \mathrm{wI}[/tex]

[tex]w_{u}=3.515 \frac{\mathrm{kip}}{\mathrm{ft}}[/tex]

[tex]M_{u}:=w_{u} \cdot \frac{I^{2}}{8}[/tex]

[tex]\mathrm{Mu}=253.1 \mathrm{kip} \cdot \mathrm{ft}[/tex]

[tex]\beta _{1}[/tex] = [tex]0.85-\frac{0.05\left(\mathrm{f}_{\mathrm{c}}-4000 \mathrm{psi}\right)}{1000 \mathrm{psi}}[/tex]

[tex]\beta _{1}[/tex] = 0.85

[tex]\rho_{\max }:=0.85 \cdot \beta_{1} \cdot \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{y}}} \cdot \frac{0.003}{0.003+0.004}[/tex]

= 0.0206

a) The section property is found to carry Mu.

For ρ = 0.6 max.

ρ = 0.0124

Resistance = [tex]\rho \mathrm{f}_{\mathrm{y}}\left(1-0.588 \frac{\rho \mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}}\right)[/tex]

Resistance ρ<ρ0.005 then Φ = 0.90

[tex]b:=\sqrt[3]{\frac{M_{u}}{2.25 \cdot \phi \cdot R e s i s t a n c e}}[/tex] = 13.134 in

d = 1.5 b

d = 19.7 in

[tex]A S:=\rho \cdot b \cdot d b[/tex] = [tex]A s=3.78 \text { in } 2[/tex]

The solution is used for 4-#8

b = 14" d = 20.5" h = 22"

[tex]A s=4-0.79 i n 2[/tex] b = 14.in d = 20.5.in  h = 22.in

Design capacity is

[tex]\mathbf{a}:=\frac{\mathbf{A}_{\mathbf{s}} \cdot \mathbf{f}_{\mathbf{y}}}{0.85 \cdot \mathbf{f}_{\mathbf{c}} \cdot \mathbf{b}}[/tex] = 3.98 in

[tex]\phi M_{n}:=\phi \cdot A_{s} \cdot f_{y}\left(d-\frac{a}{2}\right)[/tex]

[tex]\phi M n=263 \mathrm{ft} \cdot \mathrm{kip}[/tex] > M OK [tex]\mathrm{Mu}=263.1 \mathrm{ft}.\mathrm{kip}[/tex]

b)

[tex]\rho_{005}:=0.85 \cdot \beta_{1} \cdot \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{y}}} \cdot \frac{0.003}{0.003+0.005}[/tex]

[tex]\rho:=\rho 005[/tex]  [tex]\rho=\rho 0.0181[/tex]

Resistance = [tex]\rho \mathrm{f}_{\mathrm{y}}\left(1-0.588 \frac{\rho \mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}}\right)[/tex]

Resistance = 911 psi

[tex]b:=\sqrt[3]{\frac{M_{u}}{1.5^{2} \cdot \phi \cdot R e s i s t a n c e}}[/tex]

= 11.8 in

d = 1.5 b

d = 17.7 in

[tex]A S:=\rho \cdot b \cdot d[/tex] [tex]A s=3.78 \text { in } 2[/tex]

4-#9 is satisfied [tex]A s=4.0 \text { in } 2[/tex]

Dimensions of beam b = 12" d = 18" h = 21"

Less area of steel increases the depth.