A specimen of aluminum having a rectangular cross-section of 10 mm x 12.7 mm is pulled in tension with 35,500 N of force, producing only elastic deformation. Calculate the resulting strain.

Respuesta :

Explanation:

The given data is as follows.

            Cross-section area of the rectangular is as follows.

      Area = [tex]10 mm \times 12.7 mm[/tex]

              = [tex]127 \times 10^{-6} m^{2}[/tex]

              = [tex]1.27 \times 10^{-4} m^{2}[/tex]

Tension applied on the specimen is 35,500 N

Now, formula to calculate the modulus of elasticity for a material of aluminium is as follows.

       E = 70 GPa

          = [tex]70 \times 10^{9} Pa[/tex]

or,      = [tex]70 \times 10^{9} N/m^{2}[/tex]

Now, stress on the specimen is as follows.

           [tex]\sigma = \frac{P}{A}[/tex]

                      = [tex]\frac{35000}{1.27 \times 10^{-4}}[/tex]

                      = [tex]275.59 \times 10^{6} N/m^{2}[/tex]

According to Hook's law, we will calculate the resulting stain as follows.

           [tex]\sigma = E \epsilon[/tex]

       [tex]\epsilon = \frac{\sigma}{E}[/tex]

                  = [tex]\frac{275.59 \times 10^{6}}{70 \times 10^{9}}[/tex]

                  = [tex]3.937 \times 10^{-3} mm/mm[/tex]

Thus, we can conclude that the resulting strain is [tex]3.937 \times 10^{-3} mm/mm[/tex].