Answer:
Step-by-step explanation:
Hello!
You have two random samples obtained from two different normal populations.
Sample 1
n₁= 15
X[bar]₁= 350
S₁= 12
Sample 2
n₂= 17
X[bar]₂= 342
S₂= 15
At α: 0.05 you need to obtain the p-value for testing variances for a one tailed test.
If the statistic hypotheses are:
H₀: σ₁² ≥ σ₂²
H₁: σ₁² < σ₂²
The statistic to test the variances ratio is the Stenecor's-F test. [tex]F_{H_0}=(\frac{S^2_1}{Sigma^2_1}) * (\frac{S^2_2}{Sigma^2_2} )[/tex]~[tex]F_{n_1-1;n_2-1}[/tex]
[tex]F_{H_0}= \frac{(12)^2}{(15)^2} * 1= 0.64[/tex]
The p-value is:
P([tex]F_{14;16}[/tex]≤0.64)= 0.02
I hope it helps!