A uniformly charged ring of radius 10.0 cm has a total charge of 75.0 mC. Find the electric field on the axis of the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and (d) 100 cm from the center of the ring.

Respuesta :

Answer:

(a) 6650246.305 N/C

(b) 24150268.34 N/C

(c) 6408227.848 N/C

(d) 665024.6305 N/C

Explanation:

Given:

Radius of the ring (r) = 10.0 cm = 0.10 m           [1 cm = 0.01 m]

Total charge of the ring (Q) = 75.0 μC = [tex]75\times 10^{-6}\ \mu C[/tex]    [1 μC = 10⁻⁶ C]

Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:

[tex]E_x=\dfrac{kQx}{(x^2+r^2)^\frac{3}{2}}[/tex]

Plug in the given values for each point and solve.

(a)

Given:

[tex]Q=75\times 10^{-6}\ \mu C[/tex], [tex]r=0.01\ m, a=1.00\ cm=0.01\ m,k=9\times 10^{9}\ Nm^2/C^2[/tex]

Electric field is given as:

[tex]E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.01)}{((0.01)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{6750}{1.015\times 10^{-3}}\\\\E_x=6650246. 305\ N/C[/tex]

(b)

Given:

[tex]Q=75\times 10^{-6}\ \mu C[/tex], [tex]r=0.01\ m, a=5.00\ cm=0.05\ m,k=9\times 10^{9}\ Nm^2/C^2[/tex]

Electric field is given as:

[tex]E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.05)}{((0.05)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{33750}{1.3975\times 10^{-3}}\\\\E_x=24150268.34\ N/C[/tex]

(c)

Given:

[tex]Q=75\times 10^{-6}\ \mu C[/tex], [tex]r=0.01\ m, a=30.0\ cm=0.30\ m,k=9\times 10^{9}\ Nm^2/C^2[/tex]

Electric field is given as:

[tex]E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.30)}{((0.30)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{202500}{0.0316}\\\\E_x=6408227.848\ N/C[/tex]

(d)

Given:

[tex]Q=75\times 10^{-6}\ \mu C[/tex], [tex]r=0.01\ m, a=100\ cm=1\ m,k=9\times 10^{9}\ Nm^2/C^2[/tex]

Electric field is given as:

[tex]E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(1)}{((1)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{675000}{1.015}\\\\E_x=665024.6305\ N/C[/tex]