Answer:
[tex]\frac{dh}{dt} = \frac{F_{in} }{36\pi } - \frac{5}{12}[/tex]
Explanation:
Thinking process:
Let the radius = 6 m
The rate of removal of the beer = 15 m³/hr
This can be written as: [tex]F_{out} = 15 m^{3}/hr[/tex]
the rate or change [tex]\frac{dV}{dt} = F_{in} - F_{out}[/tex]
this changes to [tex]\frac{d(Ah)}{dt} = F_{in} - F_{out} \\A\frac{dh}{dt}= F_{in}-F_{out} \\\frac{dh}{dt } = \frac{1}{A}(F_{in}-F_{out})\\ =\frac{F_{in} }{36}-\frac{5}{12}[/tex]