An infinite conducting cylindrical shell has radius 0.35 m and surface charge density 1.6 μC/m2. What is the magnitude of the electric field, in newtons per coulomb, 1.3 m from the axis of the cylinder?

Respuesta :

Answer:

The magnitude of the electric field is 8504 N/C

Explanation:

 rc = 0.35 m, Ac = 2πr^2 = 2 x π x 0.35^2 = 0.769 m^2, σ = 1.6 μC/m2 = 0.0000016 μC/m2

Surface Charge Density = total charge / surface area cylinder

σ = q / A ⇒ q = σ · A

q = 0.0000016 x 0.769

q = 1.23 μC

r = 1.3 m, k = 8.988 x 10^9

electric field vector = Coulomb constant * charge ÷ distance from charge

E = k * q ÷ r

E = 8.988 x 10^9 x 1.23 x 10^(-6) ÷ 1.3

E = 8504 N/C

The magnitude of electric field will be "8504 N/C".

Given values:

  • Radius, r = 0.35 m
  • Surface charge density, σ = 1.6 μC/m²
  • Distance from charge, r = 1.3 m

Now,

The Surface Area of cylinder be:

= [tex]2 \pi r^2[/tex]

By putting the values,

= [tex]2\times \pi\times (0.35)^2[/tex]

= [tex]0.769 \ m^2[/tex]

The Surface Charge Density (σ),

= [tex]\frac{Total \ charge}{Surface \ area \ cylinder}[/tex]

or,

⇒ [tex]q = \sigma.A[/tex]

      [tex]=0.0000016\times 0.769[/tex]

      [tex]= 1.23 \ \mu C[/tex]

hence,

The Magnitude will be:

⇒ [tex]Electric \ field \ vector = \frac{Coulomb \ constant}{Distance}[/tex]

or,

⇒ [tex]E = \frac{k\times q}{r}[/tex]

By substituting the values,

       [tex]= \frac{8.988\times 10^9\times 1.23\times 10^{-6}}{1.3}[/tex]

       [tex]= 8504 \ N/C[/tex]

Thus the approach above is right.

Find out more information about electric field here:

https://brainly.com/question/1592046

Ver imagen Cricetus