A 30-kg iron block and a 40-kg copper block, both initially at 808C, are dropped into a large lake at 158C. Thermal equilibrium is established after a while as a result of heat transfer between the blocks and the lake water. Determine the total entropy change for this process.

Respuesta :

Explanation:

The given data is as follows.

    [tex]m_{1}[/tex] = 30 kg,      [tex]m_{2}[/tex] = 40 kg

   [tex]T_{1} = (80 - 15)^{o}C[/tex] = [tex]65^{o}C[/tex]

   [tex]T_{2}[/tex] = [tex]65^{o}C[/tex]

Now, we will calculate the heat energy as follows.

       [tex]Q_{1} = m_{1}C \Delta T_{1}[/tex]

                   = [tex]30 \times 0.45 \times 65^{o}C[/tex]

                   = 877.5 kJ

and,    [tex]Q_{2} = m_{2}C \Delta T_{2}[/tex]

                     = [tex]40 \times 0.386 \times 65[/tex]

                     = 1003.6 kJ

 [tex](\Delta S)_{lake} = \frac{(Q_{1} + Q_{2})}{T_{o}}[/tex]

               = [tex]\frac{(877.5 + 1003.6) kJ}{288}[/tex]

               = 6.531 kJ/K

 [tex]\Delta S_{1} = m_{1}C_{1} ln \frac{T_{2}}{T_{1}}[/tex]

              = [tex]30 \times 0.45 ln \frac{288}{353}[/tex]

              = -2.747 kJ/K

 [tex]\Delta S_{2} = m_{2}C_{2} ln \frac{T_{2}}{T_{1}}[/tex]

              = [tex]40 \times 0.386 \times ln \frac{288}{353}[/tex]

              = -3.142 kJ/K

Now, we will calculate the total entropy as follows.

    [tex]\Delta S_{total} = \Delta S_{lake} + \Delta S_{body}[/tex]

                = 6.531 kJ/K - 2.747 kJ/K - 3.142 kJ/K

                = 0.64 kJ/K

thus, we can conclude that the total entropy change for this process is 0.64 kJ/K.