The maximum stress in a section of a circular tube subject to a torque is τmax = 27 MPa . If the inner diameter is Di = 3.75 cm and the outer diameter is Do = 5.25 cm , what is the torque on the section?

Respuesta :

Answer:

[tex]T_{max} = 4.735\,kN\cdot m[/tex]

Explanation:

The shear stress due to torque can be calculed by using the following model:

[tex]\tau_{max} = \frac{T_{max}\cdot r_{ext}}{J_{tube}}[/tex]

The maximum torque on the section is:

[tex]T_{max} = \frac{\tau_{max}\cdot J_{tube}}{r_{ext}}[/tex]

The Torsion Constant for the circular tube is:

[tex]J_{tube} = \frac{\pi}{32}\cdot (D_{ext}^{4}-D_{int}^{4})[/tex]

[tex]J_{tube} = \frac{\pi}{4}\cdot [(0.053\,m)^{4}-(0.038\,m)^{4}][/tex]

[tex]J_{tube} = 4.560\times 10^{-6}\,m^{4}[/tex]

Now, the require output is computed:

[tex]T_{max} = \frac{(27\times 10^{3}\,kPa)\cdot (4.560\times 10^{-6}\,m^{4})}{0.026\,m}[/tex]

[tex]T_{max} = 4.735\,kN\cdot m[/tex]

Answer:

T = 4.735 KN .m

Explanation:

T max = 27 MPa = 27 * 10⁶ Pa

Di (inner diameter ) = 3.75 cm = 0.0375 m

Do ( outer diameter ) = 5.25 cm = 0.0525 m

To calculate the Torque on the section apply this formula

[tex]\frac{T}{Jtube}[/tex]  = [tex]\frac{Tmax}{\frac{Do}{2} }[/tex]  equation 1

J tube = torsion constant: π/2( Do^4 - Do^4 ) = π/2 (0.0525 ^4 - 0.0375^4)

= 4.560 * 10^-6 m⁴

T = torque of the section

from equation 1 :

T = (T max * J tube ) / ( Do/2 )

  = (27000000 *  4.560 * 10 ^-6 ) / 0.0525

  = 4.735 KN.m