Respuesta :
Answer:
[tex]T_{max} = 4.735\,kN\cdot m[/tex]
Explanation:
The shear stress due to torque can be calculed by using the following model:
[tex]\tau_{max} = \frac{T_{max}\cdot r_{ext}}{J_{tube}}[/tex]
The maximum torque on the section is:
[tex]T_{max} = \frac{\tau_{max}\cdot J_{tube}}{r_{ext}}[/tex]
The Torsion Constant for the circular tube is:
[tex]J_{tube} = \frac{\pi}{32}\cdot (D_{ext}^{4}-D_{int}^{4})[/tex]
[tex]J_{tube} = \frac{\pi}{4}\cdot [(0.053\,m)^{4}-(0.038\,m)^{4}][/tex]
[tex]J_{tube} = 4.560\times 10^{-6}\,m^{4}[/tex]
Now, the require output is computed:
[tex]T_{max} = \frac{(27\times 10^{3}\,kPa)\cdot (4.560\times 10^{-6}\,m^{4})}{0.026\,m}[/tex]
[tex]T_{max} = 4.735\,kN\cdot m[/tex]
Answer:
T = 4.735 KN .m
Explanation:
T max = 27 MPa = 27 * 10⁶ Pa
Di (inner diameter ) = 3.75 cm = 0.0375 m
Do ( outer diameter ) = 5.25 cm = 0.0525 m
To calculate the Torque on the section apply this formula
[tex]\frac{T}{Jtube}[/tex] = [tex]\frac{Tmax}{\frac{Do}{2} }[/tex] equation 1
J tube = torsion constant: π/2( Do^4 - Do^4 ) = π/2 (0.0525 ^4 - 0.0375^4)
= 4.560 * 10^-6 m⁴
T = torque of the section
from equation 1 :
T = (T max * J tube ) / ( Do/2 )
= (27000000 * 4.560 * 10 ^-6 ) / 0.0525
= 4.735 KN.m