Flow and Pressure Drop of Gases in Packed Bed. Air at 394.3 K flows through a packed bed of cylinders having a diameter of 0.0127 m and length the same as the diameter. The bed void fraction is 0.40 and the length of the packed bed is 3.66 m. The air enters the bed at 2.20 atm abs at the rate of 2.45 kg/m2 · s based on the empty cross section of the bed. Calculate the pressure drop of air in the bed.

Ans: Δp = 0.1547 × 105 Pa

Respuesta :

The pressure drop of air in the bed is  14.5 kPa.

Explanation:

To calculate Re:

[tex]R e=\frac{1}{1-\varepsilon} \frac{\rho q d_{p}}{\mu}[/tex]

From the tables air property

[tex]\mu_{394 k}=2.27 \times 10^{-5}[/tex]

Ideal gas law is used to calculate the density:

ρ = [tex]\frac{2.2}{2.83 \times 10^{-3} \times 394.3}[/tex]

ρ = 1.97 Kg / [tex]m^{3}[/tex]

ρ = [tex]\frac{P}{RT}[/tex]

R = [tex]\frac{R_{c} }{M}[/tex] = 8.2 × [tex]10^{-5}[/tex] / 28.97×[tex]10^{-3}[/tex]

R = 2.83 × [tex]10^{-3}[/tex] [tex]m^{3}[/tex] atm / K Kg

q is expressed in the unit m/s

[tex]q=\frac{2.45}{1.97}[/tex]

q = 1.24 m/s

Re = [tex]\frac{1}{1-0.4} \frac{1.97 \times 1.24 \times 0.0127}{2.27 \times 10^{-5}}[/tex]

Re = 2278

The Ergun equation is used when Re > 10,

[tex]\frac{\Delta P}{L}=\frac{180 \mu}{d_{p}^{2}} \frac{(1-\varepsilon)^{2}}{\varepsilon^{3}} q+\frac{7}{4} \frac{\rho}{d_{p}} \frac{(1-\varepsilon)}{\varepsilon^{3}} q^{2}[/tex]

[tex]\frac{\Delta P}{L}=\frac{180 \times 2.27 \times 10^{-5}}{0.0127^{2}} \frac{(1-0.4)^{2}}{0.4^{3}} 1.24[/tex] [tex]+\frac{7}{4} \frac{1.97}{0.0127} \frac{(1-0.4)}{0.4^{3}} 1.24^{2}[/tex]

= 4089.748 Pa/m

ΔP = 4089.748 × 3.66

ΔP = 14.5 kPa