Respuesta :

Here is the correct question.

Given: AZ = 3 cm, ZC = 2 cm, MC = 5 cm, BM=3 cm. Find:

the ratio of areas XY: YZ

Answer:

XY : YZ = 1.8 : 3

Step-by-step explanation

From the diagram below:

Line XZ is parallel  to Line BC

i.e [tex]\bar {XZ} //[/tex] [tex]\bar {BC}[/tex]

This is typically and isosceles triangle with a triangle and a parallelogram embedded in it.

So; to solve for XY and YZ; we have

[tex]\frac{\bar {AC}}{\bar {AZ}}[/tex] = [tex]\frac{\bar {BM}}{\bar {XY}}[/tex] = [tex]\frac{\bar {MC}}{\bar {YZ}}[/tex]

[tex]\frac{\bar {5}}{\bar {3}} =\frac{\bar {3}}{\bar {XY}}=\frac{\bar {5}}{\bar {YZ}}[/tex]

Let's first solve for XY :

= [tex]\frac{\bar {5}}{\bar {3}} =\frac{\bar {3}}{\bar {XY}}[/tex]

3 × 3 = 5(XY)

9 = 5(XY)

XY = [tex]\frac{\bar {9}}{\bar {5}}[/tex]

XY  = 1.8

From XY = 1.8

we have:

[tex]\frac{3}{XY}=\frac{5}{YZ}[/tex]

[tex]\frac{3}{1.8}=\frac{5}{YZ}[/tex]

3(YZ) =5 × 1.8

YZ = [tex]\frac{5*1.8}{3}[/tex]

YZ = 3

∴ XY: YZ

= 1.8 : 3

Ver imagen ajeigbeibraheem

Answer:

Given: AZ = 3 cm, ZC = 2 cm, MC = 5 cm, BM=3 cm. Find:

the ratio of areas XY: YZ

Step-by-step explanation: