How many photons/s are contained in a beam of electromagnetic radiation of total power 180 W if the source is (a) an AM radio station of 1100 kHz, (b) 8.0-nm x rays, and (c) 4.0-MeV gamma rays?

Respuesta :

Answer:

a) No. of photons/s = 246961 x [tex]10^{24}[/tex]

b) No. of photons/s = 72.43 x [tex]10^{17}[/tex]

c) No. of photons/s = 28.125 x [tex]10^{13}[/tex]

Explanation:

Given total power of electromagnetic radiation = 180 W = 180 j/s

a)Given source of frequency γ = 1100kHz

                                     =1100 x [tex]10^{3}[/tex] Hz

We know that, Energy of each photon E = hγ

where h = 6.626 x [tex]10^{-34}[/tex] Js is planck's constant

E = 6.626 x [tex]10^{-34}[/tex] x 1100 x [tex]10^{3}[/tex]

  = 7288.6 x [tex]10^{-31}[/tex]J

Total energy of all photons = 180 j/s

No. of photons = [tex]\frac{Total energy of all photons}{Energy of each photon}[/tex]

                         = [tex]\frac{180 J/s}{7288.6x10^{-31} }[/tex]

                         = 246961 x [tex]10^{24}[/tex]

b) Given wavelength λ = 8nm

We know that c= γλ

where c=3x[tex]10^{8}[/tex] m[tex]s^{-1}[/tex] is velocity of light

Therefore, frequency γ = c/λ

                                       = [tex]\frac{3 x 10^{8} }{8x10^{-9} }[/tex]

                                       = 0.375 x [tex]10^{17}[/tex]

Also we know that E = hγ

                                   = 6.626 x [tex]10^{-34}[/tex] x 0.375 x [tex]10^{17}[/tex]

                                   = 2.485 x [tex]10^{-17}[/tex]

Hence no. of photons = [tex]\frac{180}{2.484x10^{-17} }[/tex]

                                     = 72.43 x [tex]10^{17}[/tex]

c) Given Energy of each photon = 4 MeV

We know that 1 Mev = 1.6 x [tex]10^{-13}[/tex] J

Therefore Energy of each photon = 4 x 1.6 x [tex]10^{-13}[/tex] J

                                                        = 6.4 x [tex]10^{-13}[/tex] J

No. of photons = [tex]\frac{180}{6.4x10^{-13} }[/tex]

                         = 28.125 x [tex]10^{13}[/tex]