If the function f(x) = (2x - 3)2 is transformed to g(x) = (-2x - 3), which type of transformation occurred?

A

horizontal reflection

OB. horizontal shift

OC. vertical shift

OD.

vertical reflection

Respuesta :

Answer:

A. horizontal reflection

Step-by-step explanation:

Given:

[tex]f(x)=(2x-3)^2[/tex]

[tex]g(x)=(-2x-3)^2[/tex]

To identify the type of transformation.

Solution:

On close observation of the functions we find the that sign of [tex]x[/tex] has changed in [tex]g(x)[/tex] with other terms being constant.

Thus, the transformation statement can be given as:

[tex]f(x)\rightarrow f(-x)[/tex]

As:

[tex]f(x)=(2x-3)^2[/tex]

[tex]f(-x)=(2(-x)-3)^2= (-2x-3)^2 = g(x)[/tex]

The transformation [tex]f(x)\rightarrow f(-x)[/tex] describes horizontal reflection of function across the y-axis.

Thus, [tex]f(x)[/tex]  is horizontally reflected across y-axis to get [tex]g(x)[/tex].