If you are interested only in the temperature range of 20° to 40°C and the ADC has a 0 to 3V input range, design a signal conditioning circuit to maximize the SQNR (the temperature sensor’s output will be the input of the signal conditioning circuit, and the signal conditioning circuit’s output will be applied to the ADCs input).

Respuesta :

Explanation:

Temperature range → 0 to 80'c

respective voltage output → 0.2v to 0.5v

required temperature range 20'c to 40'c

Where T = 20'c respective voltage

[tex]\begin{aligned}v_{20} &=0.2+\frac{0.5-0.8}{80} \times 20 \\&=0.2+\frac{0.3}{80} \times 20 \\V_{20} &=0.275 v\end{aligned}[/tex]

[tex]\begin{aligned}\text { when } T=40^{\circ} C & \text { . } \\v_{40} &=0.2+\frac{0.5-0.2}{80} \times 40 \\&=0.35 V\end{aligned}[/tex]

Therefore, Sensor output changes from 0.275v to 0.35volts for the ADC the required i/p should cover the dynamic range of ADC (ie - 0v to 3v)

so we have to design a circuit which transfers input voltage 0.275volts - 0.35v to 0 - 3v

Therefore, the formula for the circuit will be

[tex]\begin{array}{l}v_{0}=\left(v_{i n}-0.275\right) G \\\sigma=\ldots \frac{3-0}{0.35-0.275}=3 / 0.075=40 \\v_{0}=\left(v_{i n}-0.275\right) 40\end{array}[/tex]

The simplest circuit will be a op-amp

NOTE: Refer the figure attached

Vs is sensor output

Vr is the reference volt, Vr = 0.275v

[tex]\begin{aligned}v_{0}=& v_{s}-v_{v}\left(1+\frac{R_{2}}{R_{1}}\right) \\\Rightarrow & \frac{1+\frac{R_{2}}{R_{1}}}{2}=40 \\& \frac{R_{2}}{R_{1}}=39 \quad \Rightarrow\end{aligned}[/tex]

choose R2, R1 such that it will maintain required  ratio

The output Vo can be connected to voltage buffer if you required better isolation.

Ver imagen arjunrv
Ver imagen arjunrv