The weight of the specimen in SSD condition is 373.3 cc
Explanation:
a) Apparent specific gravity = [tex]\frac{A}{A-C}[/tex]
Where,
A = mass of oven dried test sample in air = 1034 g
B = saturated surface test sample in air = 1048.9 g
C = apparent mass of saturated test sample in water = 975.6 g
apparent specific gravity = [tex]\frac{A}{A-C}[/tex]
= [tex]\frac{1034}{1034-675 \cdot 6}[/tex]
Apparent specific gravity = 2.88
b) Bulk specific gravity [tex]G_{B}^{O D}=\frac{A}{B-C}[/tex]
[tex]G_{B}^{O D}=\frac{1034}{1048.9-675 \cdot 6}[/tex]
= 2.76
c) Bulk specific gravity (SSD):
[tex]G_{B}^{S S D}=\frac{B}{B-C}[/tex]
[tex]=\frac{1048 \cdot 9}{1048 \cdot 9-675 \cdot 6}[/tex]
[tex]G_{B}^{S S D}[/tex] = 2.80
d) Absorption% :
[tex]=\frac{B-A}{A} \times 100 \%[/tex]
[tex]=\frac{1048 \cdot 9-1034}{1034} \times 100[/tex]
Absorption = 1.44 %
e) Bulk Volume :
[tex]v_{b}=\frac{\text { weight of dispaced water }}{P \omega t}[/tex]
[tex]=\frac{1048 \cdot 9-675 \cdot 6}{1}[/tex]
= [tex]373.3 cc[/tex]