Answer:
[tex]Given data:\\While walking across campus one windy day\\Frontal area, \(A=0.3 m ^{2}\)\\Wind speed \(V=24 Km / hr\)\\The drag coefficient \(C_{D, b}=1.2\)\\The combined mass \(m=75 kg\)\\Umbrella diameter, \(D=1.22 m\)\\Velocity of wind \(V=24 \frac{ km }{ hr }\)\\The rolling resistance \(C_{R}=0.75 \%\)[/tex]
Solution:
Note: Refer the diagram
[tex]Basic equation:\\'s law of motion: \(\sum F_{x}=m a_{x}\)\\Lift coefficient, \(C_{L}=\frac{F_{L}}{\frac{1}{2} \rho V^{2} A_{p}}\)\\Drag coefficient, \(C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A_{p}}\)[/tex]
[tex]From force balance equation:\\\(\sum F_{x}=F_{D}-F_{R}=0\)\\But \(F_{D}=\left(C_{D, \alpha} A_{u}+C_{D, B} A_{b}\right) \frac{1}{2} \rho\left(V_{\nu}-V_{b}\right)^{2}\)\(F_{R}=C_{R} m g\)\\Area of the Umbrella \(A_{u}=\frac{\pi D_{u}^{2}}{4}\)\(A_{x}=\frac{\pi \times 1.22^{2}}{4} m ^{2}\)\(A_{v}=1.17 m ^{2}\)[/tex]
Drag coefficient data for selected objects table at
Hemisphere (open end facing flow), [tex]C_{D, x}=1.42[/tex]
Substituting all parameters,
[tex]\begin{aligned}&F_{R}=0.0075 \times 75 \times 9.81\\&F_{R}=5.52 N\end{aligned}[/tex]
Then,
[tex]\begin{aligned}&V_{b}=V_{w}-\left[\frac{2 F_{R}}{\rho\left(C_{D, w} A_{w}+C_{D, B} A_{b}\right)}\right]^{\frac{1}{2}} \dots\\&V_{w}=24 \times 1000 \times \frac{1}{3600}\\&V_{w}=6.67 \frac{ m }{ s }\end{aligned}[/tex]
And the equation becomes,
[tex]\begin{aligned}&V_{b}=6.67-\left[\frac{2 \times 5.52}{1.23(1.42 \times 1.17+1.2 \times 0.3)}\right]^{\frac{1}{2}}\\&V_{b}=6.67-2.11\\&V_{b}=4.56 \frac{ m }{ s }\end{aligned}[/tex]
Thus the floyds travels at [tex]68.3^{\circ}[/tex]wind speed.