Answer:
The parametric equation for the position of the particle is [tex](-18+5t,-8+3t,6-2t)[/tex].
Explanation:
Given that,
The point is
[tex]P=(-3,1,0)[/tex]
Time t = 3
Velocity [tex]v=(5,3,-2)[/tex]
We need to calculate the parametric equation for the position of the particle
Using parametric equation for position
[tex]r(t)=r_{0}+v(t)t[/tex]....(I)
at t = 3,
[tex]P=r(t)[/tex]
Put the value into the formula
[tex](-3,1,0)=r_{0}+(5,3,-2)\times3[/tex]
[tex](-3,1,0)=r_{0}+(15,9,-6)[/tex]
[tex]r_{0}=(-18,-8,6)[/tex]
Put the value of r₀ in equation (I)
[tex]r(t)=(-18,-8,6)+(5,3,-2)t[/tex]
[tex]r(t)=(-18+5t,-8+3t,6-2t)[/tex]
Hence, The parametric equation for the position of the particle is [tex](-18+5t,-8+3t,6-2t)[/tex].