Two protons, starting several meters apart, are aimed directly at each other with speeds of 2.00 * 105 m>s, measured relative to the earth. Find the maximum electric force that these protons will exert on each other.

Respuesta :

Explanation:

Since, the two protons are at the initial state of point a and point b. Hence, total mechanical energy at point a and point b is as follows.

           [tex]U_{a} + K_{a} = U_{b} + K_{b}[/tex]

or,           [tex]K_{a} = U_{b}[/tex]  

where,   [tex]K_{a}[/tex] = kinetic energy of two protons

So,      [tex]2(\frac{1}{2}mV^{2}_{a}) = \frac{1}{4 \pi \epsilon_{o}} \frac{|e|^{2}}{r_{b}}[/tex]

       [tex]r_{b} = \frac{1}{4 \pi \epsilon_{o}} \frac{e^{2}}{mV^{2}_{a}}[/tex]

Putting the given values into the above formula we will calculate the value of [tex]r_{b}[/tex] as follows.

      [tex]r_{b} = \frac{1}{4 \pi \epsilon_{o}} \frac{e^{2}}{mV^{2}_{a}}[/tex]

                = [tex](9.0 \times 10^{9} Nm^{2}/C^{2} \frac{(1.602 \times 10^{-19}^{2} C}{1.67 \times 10^{-27} kg \times 2 \times 10^{5}}[/tex]

                = [tex]3.45 \times 10^{-12} m[/tex]

Now, we will calculate the maximum electric field as follows.

      F = [tex]\frac{1}{4 \pi \epsilon_{o}} \frac{|e|^{2}}{r^{2}_{b}}[/tex]

         = [tex]9.0 \times 10^{9} Nm^{2}/C^{2} \frac{(1.602 \times 10^{-19}C)^{2}}{3.45 \times 10^{-12}}[/tex]

         = [tex]0.194 \times 10^{-4} N[/tex]

Therefore, we can conclude that the maximum electric force that these protons will exert on each other is [tex]0.194 \times 10^{-4} N[/tex].