Respuesta :

Answer:

[tex]sinA=\frac{12}{37} \\\\cosA=\frac{35}{37}\\\\ tanA=\frac{12}{35}[/tex]

Step-by-step explanation:

In the given triangle we have to find the ratios of [tex]sinA[/tex] ,[tex]cosA[/tex] and [tex]tan A[/tex]

Given:

    [tex]Perpendicular= 12\\\\ Base= 35\\\\ Hypotenuse=37[/tex]

Ratio of [tex]sinA[/tex]

                  [tex]sinA= \frac{Perpendicular}{Hypotenuse} \\\\sinA= \frac{12}{37}\\[/tex]

Ratio of [tex]cosA[/tex]

                  [tex]cos A=\frac{Base}{Hypotenuse}\\\\ cosA=\frac{35}{37}[/tex]

Ratio of [tex]tan A[/tex]

                 [tex]tanA=\frac{Perpendicular}{Base} \\\\tanA=\frac{12}{35}[/tex]