Answer:
a) [tex]P(k,1)=\frac{3^ke^{-3}}{k!}[/tex]
b) E(x)=12
c) [tex]P(x)=\frac{12^xe^{-12}}{x!}[/tex]
d) 0.2240
e) 0.1144
f) 0.1171
Step-by-step explanation:
a) The appropiate Poisson probability function (k events in t interval) is:
[tex]r=3\,ev./t.p.\\\\\\P(k,t)=\frac{(rt)^ke^{-rt}}{k!} \\\\\\P(k,1)=\frac{3^ke^{-3}}{k!}[/tex]
b) In this case, t=4. The expected number of ocurrences is equal to the rate of events multiplied by the time periods:
[tex]E(x)=r\cdot t=3\cdot 4=12[/tex]
c) Probability function for 4 time periods.
[tex]r=3\,,\, t=4\\\\\\P(k,t)=\frac{(rt)^ke^{-rt}}{k!} \\\\\\P(x)=\frac{12^xe^{-12}}{x!}[/tex]
d) Three occurrences in one time period
[tex]P(3)=\frac{3^3e^{-3}}{3!}= \frac{27*0.0498}{6}= 0.2240[/tex]
e) Twelve occurrences in four time periods
[tex]P(12)=\frac{12^{12}e^{-12}}{12!}= \frac{ 54,782,414}{ 479,001,600}= 0.1144[/tex]
f) Seven events in three time periods
[tex]P(7,3)=\frac{9^{7}e^{-9}}{7!}= \frac{ 590.27}{5040}= 0.1171[/tex]