Answer:
P[Z < -3.572]
Step-by-step explanation:
Given that;
[tex]\mu = 100\\ \sigma=14[/tex]
A sample of size (n) = 10
Let [tex]\bar x[/tex] be mean of the sample
So the sampling distribution of [tex]\bar x[/tex] = Mean [tex]\mu_ {\bar x} = \mu =100[/tex]
SD [tex]\sigma _{ \bar x} =\frac{\sigma}{\sqrt{n}}[/tex]
[tex]\sigma _{ \bar x} =\frac{14}{\sqrt{10}}[/tex]
=4.4
To calculate: [tex]P( \bar x < 95)[/tex]; we have:
[tex]= P[\frac{(\bar x - \mu_{\bar x})}{\frac{\sigma _{\bar x}<(95-100)}{14} } ][/tex]
= P [Z < -3.572]