Respuesta :

Answer:

a) The explicit formula is [tex]a_n=7n+5[/tex]

b) The 31st term of the sequence is 222

Step-by-step explanation:

a) The explicit formula for an arithmetic sequence is:

[tex]a_n=a_1+(n-1)d[/tex]

The recursive formula for the sequence is

[tex]a_1=12\\a_n=a_{n-1}+7[/tex]

From this formula we can find the common difference by comparing to the general recursive formula:[tex]\\a_n=a_{n-1}+d[/tex]

This means the common difference d=7.

We now substitute the first term [tex]a_1=12[/tex] and the common difference [tex]d=7[/tex]  into the explicit formula: [tex]a_n=a_1+(n-1)d[/tex] to obtain:

[tex]a_n=12+(n-1)\times 7[/tex]

Expand to get:

[tex]a_n=12+7n-7[/tex]

Simplify:

[tex]a_n=7n+5[/tex]

b) To find the 31st term of this sequence, we substitute n=31 in to the the explicit formula, [tex]a_n=7n+5[/tex]  to obtain:

[tex]a_{31}=7*31+5[/tex]

Multiply to get:

[tex]a_{31}=217+5[/tex]

Add to get:

[tex]a_{31}=222[/tex]

Therefore the 31st term of the sequence is 222