Answer:
Explanation:
Part a)
As we know that drag force is given as
[tex]F = \frac{C_d \rho A v^2}{2}[/tex]
[tex]C_d = 0.35[/tex]
[tex]A = \frac{\pi d^2}{4}[/tex]
[tex]A = \frac{\pi(0.074)^2}{4}[/tex]
[tex]A = 4.3 \times 10^{-3} m^2[/tex]
[tex]v = 40.2 m/s[/tex]
so we have
[tex]F = \frac{0.35\times 1.2 (4.3 \times 10^{-3})(40.2)^2}{2}[/tex]
[tex]F = 1.46 N[/tex]
So acceleration of the ball is
[tex]a = \frac{F}{m}[/tex]
[tex]a = \frac{1.46}{0.145}[/tex]
[tex]a = 10.1 m/s^2[/tex]
Part B)
As per kinematics we know that
[tex]v_f^2 - v_i^2 = 2 a d[/tex]
[tex]v_f^2 - 40.2^2 = 2(-10.1)(18.4)[/tex]
[tex]v_f = 35.3 m/s[/tex]