Show that the electric potential along the axis of a uniformly charged disk of radius R and charge density sigma is given by by integrating the electric field e along the axis of the disk

Respuesta :

Explanation:

Area of ring [tex]\ 2{\pi} a d a[/tex]

Charge of on ring [tex]d q=-(\ 2{\pi} a d a)[/tex]

Charge on disk

[tex]Q=-\left(\pi R^{2}\right)[/tex]

[tex]\begin{aligned}d v &=\frac{k d q}{\sqrt{x^{2}+a^{2}}} \\&=2 \pi-k \frac{a d a}{\sqrt{x^{2}+a^{2}}} \\v(1) &=2 \pi c k \int_{0}^{R} \frac{a d a}{\sqrt{x^{2}+a^{2}}} \cdot_{2 \varepsilon_{0}}^{2} R \\&=2 \pi \sigma k[\sqrt{x^{2}+a^{2}}]_{0}^{2} \\&=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}}[\sqrt{z^{2}+R^{2}}-(21)] \\&=\frac{\sigma}{2}(\sqrt{2^{2}+R^{2}}-2)\end{aligned}[/tex]

Note: Refer the image attached

Ver imagen letmeanswer