Respuesta :
The time required to lift 1500 tons was estimated.
Explanation:
Given data,
Head discharge H = 28-9[tex]Q^{2}[/tex]
[tex]z_{1}[/tex] = 2.5 m
[tex]z_{2}[/tex] = 7.8 m
The suction pipe [tex]L_{1}[/tex] = 16 m
The delivery pipe [tex]L_{2}[/tex] = 764 m
Diameter d = 0.8 m
coefficient of friction f = 0.005
coefficient of friction (km) pump = 1.5
H = 28-9[tex]Q^{2}[/tex]
The total head H = [tex]z_{1}[/tex] + [tex]z_{2}[/tex] + h[tex]L_{1}[/tex] + h[tex]L_{2}[/tex]
h[tex]L_{1}[/tex] = [tex]\frac{fL_{1}v^{2} }{2gd}[/tex]
h[tex]L_{2}[/tex] = [tex]\frac{fL_{2}v^{2} }{2gd}[/tex]
H = [tex]z_{1}[/tex] + [tex]z_{2}[/tex] +[tex]\frac{fL_{1}v^{2} }{2gd}[/tex] + [tex]\frac{fL_{2}v^{2} }{2gd}[/tex]
H = 2.5 + 7.8 + [tex]\frac{(0.005)(16)(v^{2}) }{(2)(9.8)(0.8)}[/tex] + [tex]\frac{(0.005)(764)(v^{2}) }{(2)(9.81)(0.8)}[/tex]
H = 10.3+0.051 [tex]v^{2}[/tex] + 2.43 [tex]v^{2}[/tex]
H = 10.3 + 2.48 [tex]v^{2}[/tex]
28-9[tex]Q^{2}[/tex] = 10.3 + 2.48 [tex]v^{2}[/tex]
V = [tex]\frac{Q}{A}[/tex] = [tex]\frac{Q}{\frac{2.0}{4} }[/tex] = 2Q