Answer:
The initial rate if [A] is halved and [B] is tripled is 0.135 [tex]\frac{m}{s}[/tex]
The initial rate if [A] is tripled and [B] is halved is 0.0225 [tex]\frac{m}{s}[/tex]
Explanation:
You have:
If [A] is halved and [B] is tripled, the new concentrations are:
Replacing these new concentrations in the velocity expression:
[tex]rate=k*\frac{[A]}{2} *(3*[B])^{2}[/tex]
[tex]rate =k*\frac{[A]}{2} *9*[B]^{2}[/tex]
[tex]rate=\frac{9}{2}* k*[A] *[B]^{2}[/tex]
Replacing k*[A]*[B]² with 0.0300 m/s:
[tex]rate=\frac{9}2} *0.0300 \frac{m}{s}[/tex]
[tex]rate=0.135 \frac{m}{s}[/tex]
The initial rate if [A] is halved and [B] is tripled is 0.135 [tex]\frac{m}{s}[/tex]
If [A] is tripled and [B] is halved, the new concentrations are:
Replacing these new concentrations in the velocity expression:
[tex]rate=k*[A]*3 *(\frac{[B]}{2} )^{2}[/tex]
[tex]rate=k*[A]*3*\frac{[B]^{2}}{4}[/tex]
[tex]rate =\frac{3}{4}* k*[A] *[B]^{2}[/tex]
Replacing k*[A]*[B]² with 0.0300 m/s:
[tex]rate =\frac{3}{4}* 0.0300 \frac{m}{s}[/tex]
[tex]rate=0.0225 \frac{m}{s}[/tex]
The initial rate if [A] is tripled and [B] is halved is 0.0225 [tex]\frac{m}{s}[/tex]