Answer:
See explanation
Step-by-step explanation:
Given the equation
[tex]x^2-6x+7=0[/tex]
Step 1: Add -7:
[tex]x^2-6x=-7[/tex]
Step 2: Add 9:
[tex]x^2-6x+9=-7+9\\ \\x^2-6x+9=2[/tex]
Step 3: Use perfect square formula:
[tex]x^2-6x+9=(x-3)^2\\ \\(x-3)^2=2[/tex]
Step 4: Take square root:
[tex]\sqrt{(x-3)^2}= \sqrt{2}[/tex]
Step 5: Simplify:
[tex]x-3=\sqrt {2}\text{ or }x-3=-\sqrt{2}[/tex]
Step 6: Add 3:
[tex]x=3+\sqrt{2}\text{ or }x=3-\sqrt{2}[/tex]