Two AISI 304 stainless steel plates 10 mm thick are subjected to a contact pressure of 1 bar under vacuum conditions for which there is an overall temperature drop of 100°C across the plates. What is the heat flux through the plates? What is the temperature drop across the contact plane?

Respuesta :

The heat flux through the plates is [tex]36297.6 \mathrm{W} / \mathrm{m}^{2}[/tex] and temperature drop across the contact plane is [tex]56^{\circ} \mathrm{C}[/tex]

Explanation:

The thermal conduction resistance in stainless-steel plates,

[tex]R_{1}=R_{2}=\frac{L}{k}=\frac{10 \times 10^{-3}}{16.6 \times 1}=6.024 \times 10^{-4} \mathrm{m}^{2} \cdot \mathrm{K} / \mathrm{W}\\[/tex]

From thermal contact resistance for metallic interfaces under vacuum condition table,

the average thermal contact resistance for stainless steel,

[tex]R_{\text {contact }}=15.5 \times 10^{-4} \mathrm{m}^{2} \cdot \mathrm{K} / \mathrm{W}[/tex]

The total Thermal resistance,

[tex]R=R_{1}+R_{\text {conteet }}+R_{2}[/tex]

[tex]=6.024 \times 10^{-4}+15.5 \times 10^{-4}+6.024 \times 10^{-4}[/tex]

[tex]=27.55 \times 10^{-4} \mathrm{m}^{2} \cdot \mathrm{K} / \mathrm{W}[/tex]

Heat flux through the plates,

[tex]q=\frac{T_{1}-T_{2}}{R}[/tex]

[tex]=\frac{100}{27.55 \times 10^{-4}}[/tex]

[tex]=36297.6 \mathrm{W} / \mathrm{m}^{2} \approx 36.3 \mathrm{kW} / \mathrm{m}^{2}[/tex]

Temperature drop across the contact plates,

[tex]q=\frac{T_{i, 1}-T_{i, 2}}{R_{\text {contact }}}[/tex]

[tex]T_{i, 1}-T_{i, 2} \approx 56^{\circ} \mathrm{C}[/tex]

Ver imagen arjunrv