Answer:
Step-by-step explanation:
Given that Logan's equation is [tex]\frac{3}{2}\times (x-10)=50[/tex]
Logan's solution and reasoning for solving an equation are shown below:
Step1 [tex]\frac{3}{2}\times (x-10)=50[/tex]
Reason 1: Given
Step2 [tex]\frac{3}{2}\times x-10+10=50+10[/tex]
Reason 2: Addition Property of Equality
Step3 [tex]\frac{3}{2}\times x=60[/tex]
Reason 3: Simplify
Step4 [tex]\frac{3}{2}\times x \times (\frac{2}{3})=60\times (\frac{2}{3})[/tex]
Reason 4: Division Property of Equality
Step5 [tex]x=40[/tex]
Reason 5: Simplify
Step1 [tex]\frac{3}{2}\times (x-10)=50[/tex]
Reason 1: Given
Step2 [tex]\frac{3}{2}\times (x)-\frac{3}{2}\times (10)=50[/tex]
Reason 2: Distributive property
Step3 [tex]\frac{3}{2}\times x-15=60[/tex]
Reason 3: Simplify
Step4 [tex]\frac{3}{2}\times x-15+15=50+15[/tex]
Reason 4: Addition Property of Equality
Step5 [tex]\frac{3}{2}\times x=65[/tex]
Reason 5: Simplify
Step6 [tex]\frac{3}{2}\times x \times (\frac{2}{3})=65\times (\frac{2}{3})[/tex]
Reason 6: Division Property of Equality
Step7 [tex]x=\frac{130}{3}[/tex]
Reason 7: Simplify