Explanation:
Let the frequency of the operation "W"ras/s
[tex]\begin{aligned}V(t) &=7.5 \cos (\omega t+\varnothing v) k V \\&=7.5 \cos w t \quad k V \\I(t) &=\cos \left(\omega t+\phi_{i}\right) \quad k A \\&=\cos (\omega t-\pi / 6) \quad k A\end{aligned}[/tex]
[tex]\(\therefore\) Power, \(P(t)=v(t) I(t)\)$\begin{array}{l}=[7.5 \cos \omega t][\cos (\cot -\pi / 6)] \times 10^{6} w \\=7.5 \cos ^{2}(2 \omega t-\pi / 6)+7.5 \cos \left(\pi_{6}\right) MW \\=3.75+7.5 \cos (2 \omega t-\pi / 6) \quad MW\end{array}$[/tex]
[tex]Real powel, \(P=\left(7.5 \times 10^{3}\right)\left(10^{3}\right) \cos \left(\varnothing_{v}-\varnothing_{I}\right)\)$\begin{array}{l}=7.5 \cos (-\pi / 6) MW \\=3.75 MW\end{array}$[/tex]