Option A : [tex]y=\frac{1}{2}x+2[/tex] is the equation that best represents the relationship
Explanation:
From the given table, the coordinates of the two quantities are [tex](2,3)[/tex], [tex](4,4)[/tex] , [tex](6,5)[/tex] and [tex](8,6)[/tex]
We need to determine the equation that best represent the relationship.
The equation can be determined by substituting the values in the slope - point formula,
[tex]y-y_1=m(x-x_1)[/tex]
First, we shall determine the slope.
Let us consider the coordinates [tex](2,3)[/tex] and [tex](6,5)[/tex]
The formula to find the slope is given by
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Substituting these coordinates, we get,
[tex]m=\frac{5-3}{6-2}[/tex]
[tex]m=\frac{2}{4}[/tex]
[tex]m=\frac{1}{2}[/tex]
Thus, the slope is [tex]m=\frac{1}{2}[/tex]
Now, we shall substitute any one of the coordinates and the slope in the formula [tex]y-y_1=m(x-x_1)[/tex]
Let us substitute the coordinate [tex](4,4)[/tex] and [tex]m=\frac{1}{2}[/tex], we get,
[tex]y-4=\frac{1}{2}(x-4)[/tex]
[tex]y-4=\frac{1}{2}x-2[/tex]
[tex]y=\frac{1}{2}x+2[/tex]
Thus, the equation that best represents the relationship is [tex]y=\frac{1}{2}x+2[/tex]
Hence, Option A is the correct answer.