Answer:
Without parameter : [tex]y = 2x -1[/tex]
Step-by-step explanation:
from x = 2 + int => t = [tex]e^{x-2}[/tex]
substitute into y equation
y = [tex]e^{2x -4} + 2[/tex]
[tex]\frac{dy}{dx} = 2e^{2x - 4}[/tex] at(x= 2)
[tex]\frac{dy}{dx} = m = 2e^{4-4} = 2e^{0} = 2 x1 = 2\\[/tex]
equation of the tangent is
[tex]y - 3 = m(x-2)\\y-3 = 2(x-2)\\y = 2x -1[/tex]