The second specimens radius after the deformation is 10.562 mm.
Explanation:
To calculate the percentage of cold work for the specimen 1:
[tex]\left(\%(W))_{1}\right.[/tex] = [tex]\frac{\left(A_{0}\right)_{1}-\left(A_{f}\right)_{1}}{\left(A_{0}\right)_{1}} \times 100[/tex] = [tex]\frac{\left(\pi r_{0}^{2}\right)_{1}-\left(\pi r_{1}^{2}\right)_{1}}{\left(\pi\left(r_{0}\right)^{2}\right)_{1}} \times 100[/tex]
[tex]\left(\%(W))_{1}\right.[/tex] =[tex]\frac{\pi(16)^{2}-\pi(13)^{2}}{\pi(16)^{2}} \times 100[/tex]
[tex]\left(\%(W))_{1}\right.[/tex] = 33.984
To calculate the percentage of cold work for the specimen 2:
[tex]\left(\%,(w))_{2}\right.[/tex] = [tex]\frac{\left(A_{0}\right)_{2}-\left(A_{f}\right) 2}{\left(A_{0}\right)_{2}} \times 100[/tex] = [tex]\frac{\left(\pi r_{0}^{2}\right)_{2}-\left(\pi r_{1}^{2}\right)_{2}}{\left(\pi r_{0}^{2}\right)_{2}} \times 100[/tex]
[tex]\left(\%,(w))_{2}\right.[/tex] =[tex]\frac{\pi(13)^{2}-\pi r_{f}^{2}}{\pi(13)^{2}} \times 100[/tex]
The deformed radius is calculated by
[tex](\% \ W)_ 2=(\%\ W)_1[/tex]
[tex]\frac{169-r_{f}^{2}}{169} \times (100)[/tex] = 33.984
[tex]r_{f}[/tex] = 10.562 mm