Respuesta :

Answer:

1005.3 cm³

Step-by-step explanation:

The radius of the cone (r) is 8 cm and the slant height is AC = AB = 17 cm.

Therefore, the height of the cone (h) will be given by [tex]\sqrt{17^{2} - 8^{2}} = \sqrt{225} = 15[/tex] cm.

We have to calculate the volume of the cone.

Therefore, the volume of the cone will be given by [tex]\frac{1}{3}\pi r^{2}h[/tex]

= [tex]\frac{1}{3} \times \frac{22}{7} \times 8^{2}\times 15[/tex]

= 1005.3 cm³ (Answer)