Answer:
Step-by-step explanation:
hello :
let : 5^x = t ... t > 0
note : 5^(2x) = (5^x)²
you have : t²-3t-18=0
(t-6)(t+3) = 0
t-6=0 or t+3=0
t = 6 or t = -3( refused)
but : 5^x = t so : 5^x = 6
using natural logs : log(5^x) = log6
x log5 =log6
x = log6/log5