or the function f(x)=x− 5 x , find all values of c in the interval [2,4] that satisfy the conclusion of the Mean-Value Theorem. If appropriate, leave your answer in radical form. Enter all fractions in lowest terms

Respuesta :

Answer:

Therefore the value of c is [tex]2\sqrt {2}[/tex]

Step-by-step explanation:

Mean Value Theorem:

It state that if f(x) is defined

(i) f(x) continuous on the interval [a,b]

(ii) f(x) differentiable on (a,b).

then there exist a one number c∈ (a,b) such that

 [tex]f'(c)=\frac{f(b)-f(a)}{b-a}[/tex]

Here [tex]f(x)= x-\frac {5}{x}[/tex]

(i) f(x) is continuous on [2,4]

Since it is discontinuous at 0 and 0∉[2,4].

(ii)  [tex]f'(x) = 1+\frac{5}{x^2}[/tex] which is exist x≠0 and 0∉(2,4).

Therefore f(x) is differentiable on (2,4)

f(x) satisfies the Mean Value Theorem,

Then there exist a number c∈(2,4) such that

[tex]f'(c)=\frac{f(4)-f(2)}{4-2}[/tex]

[tex]\Rightarrow 1+\frac{5}{c^2}=\frac{4-\frac{5}{4}-(2-\frac{5}{2})}{4-2}[/tex]

[tex]\Rightarrow 1+\frac{5}{c^2} = \frac{2+\frac{5}{4}}{2}[/tex]

[tex]\Rightarrow 1+\frac{5}{c^2}=1+\frac{5}{8}[/tex]

[tex]\Rightarrow c^2 = 8[/tex]

[tex]\Rightarrow c= 2\sqrt {2}[/tex]

Therefore the value of c is [tex]2\sqrt {2}[/tex]