Find the EXACT value of sin(A−B) if cos A = 3/5 where A is in Quadrant IV and cos B = 12/13 where B is in Quadrant IV. Assume all angles are measured from standard position. sin(A−B) =

Respuesta :

[tex]\bf \textit{Sum and Difference Identities} \\\\ sin(\alpha - \beta)=sin(\alpha)cos(\beta)- cos(\alpha)sin(\beta)[/tex]

well, for both angles A and B we're on the IV Quadrant, meaning, the sine is negative, the cosine is positive, likewise, the opposite side is negative and the adjacent side for the angle is positive.

[tex]\bf cos(A)=\cfrac{\stackrel{adjacent}{3}}{\underset{hypotenuse}{5}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{5^2-3^2}}\implies b = \pm 4 \\\\\\ \stackrel{IV~Quadrant}{b = -4}\qquad \qquad sin(A)=\cfrac{\stackrel{opposite}{-4}}{\underset{hypotenuse}{5}} \\\\[-0.35em] ~\dotfill\\\\ cos(B)=\cfrac{\stackrel{adjacent}{12}}{\underset{hypotenuse}{13}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{13^2-12^2}}\implies b = \pm 5[/tex]

[tex]\bf \stackrel{IV~Quadrant}{b = -5}\qquad \qquad sin(B)=\cfrac{\stackrel{opposite}{-5}}{\underset{hypotenuse}{13}} \\\\[-0.35em] ~\dotfill\\\\ sin(A-B)=\cfrac{-4}{5}\cdot \cfrac{12}{13}-\left( \cfrac{3}{5}\cdot \cfrac{-5}{13} \right)\implies sin(A-B)=\cfrac{-48}{65} - \left( \cfrac{-15}{65} \right) \\\\\\ sin(A-B)=\cfrac{-48}{65} + \cfrac{15}{65}\implies sin(A-B)=\cfrac{-33}{65}[/tex]