Respuesta :

Answer:

18[tex]\sqrt{3}[/tex]

Step-by-step explanation:

  1. Find length of one side
  2. Find area

altitude h=[tex]\frac{\sqrt{3}*a }{2}[/tex], where a equals the length of one side

6=[tex]\frac{\sqrt{3}*a }{2}[/tex]

a=[tex]\frac{2*6}{\sqrt{3} }[/tex]

a=[tex]\frac{2*\sqrt{3} *\sqrt{3} *3}{\sqrt{3} }[/tex]

Area of a triangle=[tex]\frac{1}{2} *base *height[/tex]

base=a

a=[tex]\sqrt[6]{3}[/tex]

h=6

area=[tex]\frac{1}{2} *6*6\sqrt{3}[/tex]

=18[tex]\sqrt{3}[/tex]

Answer: the length of the sides is 6.93 cm

Step-by-step explanation:

In an equilateral triangle, all the sides and angles are equal. The bisectors of each angle meet at the midpoint of the triangle. This means that 3 right angle triangles can be formed. Each of the right angle triangles having angle 60°, 30° and 90°. The altitude of the triangle is the opposite side while the length of each side, x of the equilateral triangle represents the hypotenuse of the right angle triangle.

To find x, we would apply the Sine trigonometric ratio

Sin θ = opposite side / hypotenuse

Sin 60 = 6/h

h = 6/Sin 60 = 6/0.8660

h = 6.93cm