Suppose cos(a)=.325
use the trig identity sin^2(a)+cos^2(a)=1
and the trig identity tan(a)=sin(a)/cos(a)
to find tan (a) in quad IV
Round to the nearest ten thousandths.

Respuesta :

The value of tan a is 2.9098

Explanation:

The given value is [tex]\cos (a)=0.325[/tex]

Now, we shall find the value of sin (a), using the identity,

[tex]\sin ^2(a)+\cos^2(a)=1[/tex]

Substituting the value of cos (a), we get,

[tex]\sin ^2(a)+(0.325)^2=1\\\sin ^2(a)+0.1056=1[/tex]

Subtracting both sides by 0.1056, we have,

[tex]\sin ^2(a)=0.8944[/tex]

Taking square root on both sides, we get,

[tex]sin a= 0.9457[/tex]

Now, we shall substitute the value of sin (a) and cos (a) to determine the value of tan (a) in the identity [tex]tan (a) =\frac{sin(a)}{cos(a)}[/tex]

[tex]tan (a) =\frac{0.9457}{0.325}\\tan (a) = 2.9098[/tex]

Thus, the value of tan (a) is 2.9098

Otras preguntas