Respuesta :

[tex]\text{To factor out the expression, all of the numbers have to have the same}\\\text{amount of variables}\\\\\text{You would see that in the expression}\,\, x^3 + 3x^2 + 2x\,\,\text{they all}\\\text{have "x"}\\\\\text{Factor out x:}\\\\x^3 + 3x^2+2x\\\\x(x^2+3x+2)\\\\\text{Factor}\,\, x^3 + 3x^2+2x\\\\x(x+1)(x+2)\\\\\boxed{\text{Answer:}\,x(x+1)(x+2)}}[/tex]

Answer:

x(x + 1)(x + 2)

Step-by-step explanation:

  x³ + 3x² + 2x

= x(x² + 3x + 2)  , notice that x is a common factor

= x(x + 1)(x + 2)

Remark: (x + 1)(x + 2) = x² + 3x + 2  ; just develop