Respuesta :
[tex]\text{To factor out the expression, all of the numbers have to have the same}\\\text{amount of variables}\\\\\text{You would see that in the expression}\,\, x^3 + 3x^2 + 2x\,\,\text{they all}\\\text{have "x"}\\\\\text{Factor out x:}\\\\x^3 + 3x^2+2x\\\\x(x^2+3x+2)\\\\\text{Factor}\,\, x^3 + 3x^2+2x\\\\x(x+1)(x+2)\\\\\boxed{\text{Answer:}\,x(x+1)(x+2)}}[/tex]
Answer:
x(x + 1)(x + 2)
Step-by-step explanation:
x³ + 3x² + 2x
= x(x² + 3x + 2) , notice that x is a common factor
= x(x + 1)(x + 2)
Remark: (x + 1)(x + 2) = x² + 3x + 2 ; just develop