Respuesta :

Answer:

Part 1) [tex]arc\ AB=49^o[/tex]

Part 2) [tex]arc\ ABC=204^o[/tex]

Part 3) [tex]arc\ BAC=156^o[/tex]

Part 4) [tex]arc\ ACB=311^o[/tex]

Step-by-step explanation:

Part 1) Find the measure of arc AB

we know that

[tex]arc\ AB=m\angle AOB[/tex] ----> by central angle

we have

[tex]m\angle AOB=49^o[/tex]

therefore

[tex]arc\ AB=49^o[/tex]

Part 2) Find the measure of arc ABC

we know that

The central angle of complete circle is equal to 360 degrees

so

[tex]arc\ ABC=360^o-107^o-49^o=204^o[/tex]

Part 3) Find the measure of arc BAC

we know that

[tex]arc\ BAC=arc\ BA+arc\ AC[/tex] ----> by angle addition postulate

we have

[tex]arc\ BA=49^o[/tex] ---> by central angle

[tex]arc\ AC=107^o[/tex] ---> by central angle

so

[tex]arc\ BAC=49^o+107^o=156^o[/tex]

Part 4) Find the measure of arc ACB

we know that

The central angle of complete circle is equal to 360 degrees

so

[tex]arc\ ACB=360^o-arc\ AB[/tex]

substitute

[tex]arc\ ACB=360^o-49^o=311^o[/tex]