Use f prime left parenthesis x right parenthesis equals ModifyingBelow lim With h right arrow 0 StartFraction f left parenthesis x plus h right parenthesis minus f left parenthesis x right parenthesis Over h EndFractionf′(x)=limh→0 f(x+h)−f(x) h to find the derivative at x for the given function. s left parenthesis x right parenthesis equals 2 x plus 6s(x)=2x+6 s prime left parenthesis x right parenthesiss′(x)equals=nothing

Respuesta :

Answer:

The derivative of given function is 2.

Step-by-step explanation:

The given function is

[tex]s(x)=2x+6[/tex]

We need to use

[tex]f'(x)=lim_{h\rightarrow 0}\dfrac{f(x+h)-f(x)}{h}[/tex]

to find the derivative of given function.

[tex]s'(x)=lim_{h\rightarrow 0}\dfrac{s(x+h)-s(x)}{h}[/tex]

[tex]s'(x)=lim_{h\rightarrow 0}\dfrac{2(x+h)+6-(2x+6)}{h}[/tex]

[tex]s'(x)=lim_{h\rightarrow 0}\dfrac{2x+2h+6-2x-6)}{h}[/tex]

[tex]s'(x)=lim_{h\rightarrow 0}\dfrac{2h}{h}[/tex]

[tex]s'(x)=lim_{h\rightarrow 0}2[/tex]

Apply limit.

[tex]s'(x)=2[/tex]

Therefore, the derivative of given function is 2.