Respuesta :
Answer:
Explanation:
- Given that d = 0.07cm = 0.0007m, l = 2.7m, extension = 1.48cm = 0.0148m, mass = 43kg
- force = 43 x 9.81 = 421.83N, Area = Pi x d^2/4 = 3.142 x 0.0007^2/4 = 3.849x10^-7m2
- Calculate the stress = Force/Area = 421.83N / 3.849x10^-7m2
= 1095961236N/m^2
- calculate the strain = extension/original length
- = 0.0148 / 2.7 = 0.005481
- Young modulus of elasticity = Stress/Strain = 1095961236N/m^2 / 0.005481 = 1.99 x 10^11Pa = Young's modulus for this alloy of nickel
- Given the inter-atomic bond length = 2.22 10-10 m
- To Calculate (the stiffness of one inter-atomic bond = Ks,i =Y x d
- Ks,i = 1.99 x 10^11 x 2.22 10-10
- Ks,i = 4.42 x 10 = 44.18N/m ; the stiffness of one inter-atomic bond
The Young's Modulus of the nickel alloy is obtained as [tex]1.9\times 10^{11}\,N/m^2[/tex].
The interatomic bond stiffness of nicket is obtained as 42.18 N/m.
Stress and Strain
Given that the diameter of the wire is, [tex]d = 0.07\,cm = 7\times 10^{-4}\,m[/tex].
So, the radius of the wire is, [tex]r=\frac{d}{2}= \frac{7\times 10^{-4}\,m}{2} =3.5\times 10^{-4}\,m[/tex].
The mass hung from the wire is, [tex]m=43\,kg[/tex].
The force exerted by the mass on the wire is the gravitational force on the mass. i.e.;
[tex]F = mg = 43\,kg \times 9.8\,m/s^2=421.4\,N[/tex]
The stress on the wire is given by,
[tex]\sigma =\frac{F}{A} = \frac{421.4\,N}{\pi \times (3.5 \times 10^{-4})^2 }=1.094\times 10^9\,N/m^2[/tex]
Initial length of the wire is, [tex]L =2.7\,m[/tex].
Extension of the wire is, [tex]\Delta L= 1.48\,cm =1.48\times 10^{-2}\,m[/tex]
Therefore the strain is given by;
[tex]\epsilon =\frac{\Delta L}{L}=\frac{1.48\times 10^{-2}\,m}{2.7\,m} =5.48\times 10^{-3}[/tex]
Now, the Young's Modulus can be given by;
[tex]Y=\frac{\sigma}{\epsilon} =\frac{1.09\times 10^9 \,N/m^2}{5.48\times 10^{-3}} =1.9\times 10^{11}\,N/m^2[/tex]
Given that the interatomic bond length is;
[tex]D= 2.22\times 10^{-10}\,m[/tex]
Therefore, the interatomic spring stiffness is given by;
[tex]k_{s,\, interatomic}=Y\times D=Y =(1.9\times 10^{11}\,N/m^2)\times (2.22\times 10^{-10}\,m)=42.18\,N/m[/tex]
Learn more about stress and strain:
https://brainly.com/question/16975744