Respuesta :
Answer:
Part a: the magnitude of the volumetric heat generation rate is [tex]21.6 \times 10^6 W/m^3[/tex]
Part b: the convective heat flux is [tex]600 W/m^2[/tex].
Part c: the amount of energy removed per unit area is [tex]1.2264 \times 10^7 J/m^2[/tex]
Explanation:
Part a
As per the heat equation
[tex]\frac{d}{dx}(\frac{dT}{dx})+\frac{\dot{q}}{k}=0\\[/tex]
Here
T is given as [tex]300-0.1\times 10^4x^2[/tex] where x is in meters
k is given as 108 W/mK
So rearranging and solving for q' gives
[tex]\dot{q}=-k\frac{d}{dx}(\frac{dT}{dx})\\\dot{q}=-108\frac{d}{dx}(\frac{d(300-0.1\times 10^4 x^2)}{dx})\dot{q}=-108\frac{d}{dx}(2\times (300-0.1\times 10^4 x))\\\dot{q}=-108\times 2\times (300-0.1\times 10^4 )\\\dot{q}=21.6 \times 10^6 W/m^3[/tex]
So the magnitude of the volumetric heat generation rate is [tex]21.6 \times 10^6 W/m^3[/tex]
Part b
[tex]q''_{conv}=h(T(L,0)-T_{\infty})[/tex]
Here
h is given as 1000W/m2K
T(L,0) is found by putting x=L in equation of T. L is given as 8cm=0.08m.
T_inf is the infinite temperature given as 20C or 293K.
So by substituting values in the equation.
[tex]q''_{conv}=h(T(L,0)-T_{\infty})\\q''_{conv}=1000((300-0.1\times 10^4 (L^2)-293)\\q''_{conv}=1000((300-0.1\times 10^4 (0.08^2)-293)\\q''_{conv}=1000((300-0.1\times 10^4 (0.0064)-293)\\q''_{conv}=1000((300-6.4-293))\\q''_{conv}=600 W/m^2[/tex]
So the convective heat flux is [tex]600 W/m^2[/tex].
Part c:
For energy balance
[tex]\dot{E_{in}}-\dot{E_{out}}=\dot{E_{st}}[/tex]
Here as
[tex]\dot{E_{in}}[/tex] is zero
So
[tex]-\dot{E_{out}}=\dot{E_{st}}[/tex]
It is given as
[tex]-\dot{E_{out}}=\dot{E_{st}}=\rho c_p(T_{final}-T_{\infty})-\rho c_p\int\limits^{x=L}_{x=0} ({T_{x,0}-T_{\infty}) \, dx[/tex]
Here as T_final and T_inf will be same so
Also ρ is given as 7000 kg/m3
cp=450 J/kg.K
[tex]\dot{E_{out}}=\rho c_p\int\limits^{x=L}_{x=0} {(T_{x,0}-T_{\infty}) \, dx}\\\dot{E_{out}}=7000 \times 450\int\limits^{x=L}_{x=0} {(300-0.1\times 10^4 x^2-293) \, dx}\\\dot{E_{out}}=3150000[300x-0.1\times 10^4 \frac{x^3}{3}-293x]_0^L\\\dot{E_{out}}=3150000[300(0.08)-0.1\times 10^4 \frac{(0.08)^3}{3}-293(0.08)]\\\dot{E_{out}}=3150000(0.3893)\\\dot{E_{out}}=1.2264 \times 10^7 J/m^2[/tex]
So the amount of energy removed per unit area is [tex]1.2264 \times 10^7 J/m^2[/tex]