Respuesta :
Answer:
[tex]f=647.17Hz[/tex]
Explanation:
Given data
Frequency fs=600 Hz
Velocity Vs=90 km/hr =25 m/s
Speed of sound v=343 m/s
To find
Frequency f heard by a person standing beside the road in front of the car
Solution
From Doppler's effect we know that:
[tex]f=f_{s}(\frac{v+vL}{v+vs} )\\ as\\vL=0[/tex]
Here Vs is negative as the source is moving towards listener
[tex]f=fs(\frac{v+0}{v-vs} )\\f=(600Hz)(\frac{343m/s+0}{343m/s-25m/s} )\\f=647.17Hz[/tex]
The frequency heard by person will be "647.17 Hz".
Given values:
- Frequency, [tex]f_s = 600 \ Hz[/tex]
- Velocity, [tex]V_s = 90 \ km/hr[/tex]
or,
[tex]= 25 \ m/s[/tex]
- Speed of sound, [tex]v = 343 \ m/s[/tex]
By using the Doppler's effect, we get
→ [tex]f = f_s(\frac{v+vL}{v+v_s} )[/tex]
By substituting the values, we get
[tex]= 600\times (\frac{343+0}{343-25} )[/tex]
[tex]= 600\times \frac{343}{318}[/tex]
[tex]= 647.17 \ Hz[/tex]
Thus the above frequency is right/
Learn more about frequency here:
https://brainly.com/question/14696233