Answer:
standard error of the difference = 1.77
Explanation:
Given data:
Sample 1
sample mean [tex]x_1 = 15.21[/tex]
standard deviation [tex]s_1 = 11.2[/tex]
sample size [tex]n_1 = 120[/tex]
Sample 2
sample mean [tex]x_2 = 10.110[/tex]
standard deviation [tex]s_2 = 14.10[/tex]
sample size [tex]n_2 = 95[/tex]
standard error of the difference is calculated as [tex]= \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}[/tex]
standard error of the difference [tex]= \sqrt{\frac{11.2^2}{120} + \frac{14.10^2}{95}}[/tex]
standard error of the difference [tex]= \sqrt{3.13}[/tex]
standard error of the difference = 1.77