In the derivation of Newton’s method, to determine the formula for xi+1, the function f(x) is approximated using a first-order Taylor approximation centered at xi. This problem investigates what happens when you try to use a second-order Taylor approximation

Respuesta :

Answer:

Part A.

Let f(x) = 0;

suppose x= a+h

such that f(x) =f(a+h) = 0

By second order Taylor approximation, we get

f(a) + hf'±(a) + [tex]\frac{h^{2} }{2!}[/tex]f''(a) = 0

[tex]h = \frac{-f'(a) }{f''(a)}[/tex] ± [tex]\frac{\sqrt[]{(f'(a))^{2}-2f(a)f''(a) } }{f''(a)}[/tex]

So, we get the succeeding equation for Newton's method as

[tex]x_{i+1} = x_{i} + \frac{1}{f''x_{i}} [-f'(x_{i})[/tex] ± [tex]\sqrt{f(x_{i})^{2}-2fx_{i}f''x_{i} } ][/tex]

Part B.

It is evident that Newton's method fails in two cases, as:

1.  if f''(x) = 0

2. if f'(x)² is less than 2f(x)f''(x)    

Part C.

In case  [tex]x_{i+1}[/tex] is close to [tex]x_{i}[/tex], the choice that shouldbe made instead of ± in part A is:

f'(x) = [tex]\sqrt{f'(x)^{2} - 2f(x)f''(x)}[/tex]  ⇔ [tex]x_{i+1} = x_{i}[/tex]

Part D.

As given [tex]x_{i+1}[/tex] = [tex]x_{i}[/tex] = h

or                 h = [tex]x_{i+1}[/tex] - [tex]x_{i}[/tex]

We get,

f(a) + hf'(a) +(h²/2)f''(a) = 0

or h² = -hf(a)/f'(a)

Also,             ([tex]x_{i+1}[/tex]-[tex]x_{i}[/tex])² = -([tex]x_{i+1}[/tex]-[tex]x_{i}[/tex])(f([tex]x_{i}[/tex])/f'([tex]x_{i}[/tex]))

So,                f(a) + hf'(a) - (f''(a)/2)(hf(a)/f'(a)) = 0

It becomes   h = -f(a)/f'(a) + (h/2)[f''(a)f(a)/(f(a))²]

Also,             [tex]x_{i+1}[/tex] = [tex]x_{i}[/tex] -f([tex]x_{i}[/tex])/f'([tex]x_{i}[/tex]) + [([tex]x_{i+1}[/tex] - [tex]x_{i}[/tex])f''([tex]x_{i}[/tex])f([tex]x_{i}[/tex])]/[2(f'([tex]x_{i}[/tex]))²]