Respuesta :
Answer:
3936 N
Explanation:
m = Mass of car = 820 kg
u = Initial velocity = 1.2 m/s
v = Final velocity = 0
d = Distance = 0.15 m
The work done is given by the change in the kinetic energy of the system
[tex]W=\dfrac{1}{2}m(v^2-u^2)\\\Rightarrow Fd=\dfrac{1}{2}m(v^2-u^2)\\\Rightarrow F=\dfrac{\dfrac{1}{2}m(v^2-u^2)}{d}\\\Rightarrow F=\dfrac{\dfrac{1}{2}820(0^2-1.2^2)}{0.15}\\\Rightarrow F=-3936\ N[/tex]
The magnitude of force is 3936 N
Answer:
[tex]F=3936\ N[/tex]
Explanation:
Given:
- initial speed of the car, [tex]u=1.2\ m.s^{-1}[/tex]
- mass of the car, [tex]m=820\ kg[/tex]
- final speed of the car, [tex]v=0\ m.s^{-1}[/tex]
- distance collapsed due to collision, [tex]s=0.15\ m[/tex]
Now by the law of energy conservation, the work done is the energy compensated in bringing the car to rest.
[tex]W=\Delta KE[/tex]
[tex]F.s=\frac{1}{2} m.u^2-\frac{1}{2} m.v^2[/tex]
where:
[tex]W=[/tex] work done by the force F
[tex]\Delta KE=[/tex] change in kinetic energy
[tex]F\times 0.15=\frac{1}{2}\times 820\times 1.2^2-0[/tex]
[tex]F=3936\ N[/tex]